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We study a quantum chain of oscillators with nonlinear quartic interactions, under the
“narrow packet” approximation. We analyse the dynamics of quantum corrections and
the conditions at which the quantum solution for average complex amplitude converges
to the corresponding classical unstable solution which describes the four-wave decay
processes of phonons. We develop an asymptotic theory by using a small quasiclassical
parameter, and determine the characteristic time scale for which the evolution of decay
processes is essentially specified by quantum effects.
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1. INTRODUCTION

In a nonlinear environment with dispersion waves may be unstable under
decay processes, see, for instance, Zakharov (1996). The instability is observed
by effective interaction of waves with vectors �kj and frequencies ω(�kj ) in a
neighbourhood of resonances

∑

j

nj ω(�kj ) = 0,

∑

j

nj
�kj = 0,

(1.1)

whence the amplitudes of the initially small waves change exponentially fast in
time at the initial stage, and nonlinear effects turn out to be essential for describing
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their dynamics. In the Fermi–Pasta–Ulam (FPU) problem these decay processes
represent the first step in developing a stochastic behavior of the system (Berman
and Izrailev, 2005; Berman and Kolovskii, 1984).

The wave decay processes are of considerable interest in problems of Bose–
Einstein condensates (BEC), chemistry, hydrodynamics of liquids and gases,
plasma physics, nonlinear optics, solid physics, etc.

Usually the dynamics of wave decay processes is described in the framework
of classical approach. Such approach seems to be justified so far the energy of
interacting waves is sufficiently large and effects related to quantities of order hdo
not become transparent. However, it is not always possible to neglect the influence
of quantum mechanical corrections on system dynamics even in the quasiclassi-
cal setting, if particularly the classical approximation is unstable. The study of
dynamical stochasticity in classical and quantum mechanics shows that if the clas-
sical system is strongly unstable then its quantum dynamics may essentially differ
from the classical one, see Berman and Zaslavskiis (1982), Berman et al. (2002),
Zaslavskii (1984), Berman et al. (2004), Berman and Vishik (2003), etc.

The present paper is devoted to quantum mechanical analysis of the dynamics
of decay processes of type (1.1) which occur in a one-dimensional nonlinear chain
of connected oscillators, see Fermi et al. (1955). The Hamiltonian of the system
has the form

H =
N∑

n=1

(
p2

n

2m
+ ε

2
(un+1 − un)2 + ν

4
(un+1 − un)4

)
, (1.2)

where pn is the momentum of the n th oscillator, un is the displacement of the
n th oscillator from the equilibrium position, N is the number of oscillators, ε

is an elasticity constant, ν is the parameter of nonlinearity, and m is the mass
of an oscillator. Below, the boundary conditions are chosen to be periodic, i.e.,
pn+N = pn and un+N = un.

The system (1.2) for h = 0 is one of the simplest models for finding conditions
of appearance of stochastic properties in nonlinear systems with many degrees of
freedom. It is intensively investigated since 1955, see for instance Fermi et al.
(1955), Budincky and Bountis (1983), Berman and Izrailev (2005) and references
therein. There is a certain connection between the instability of the decay type
in question and the stochastic instability (Berman and Kolovskii, 1984). This
latter paper presents a numerical investigation of system (1.1) in the case of
initiating short waves (“narrow packet” approximation). If the parameter ν exceeds
a critical value, νc, four wave decay processes appear corresponding to interaction
of resonances (1.1). Under further increase of ν the resonances of type (1.1)
strongly interact with each other, which finally results in a stochastic behavior of
the chain. The availability of decay processes in a classical chain seems thus to be
a preliminary step giving rise to a stochastic instability in the system.
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Note in this connection that our approach based on the decay processes of the
finite amplitude waves, which we analyse below, is different from the approach
based on the interaction of other well-known solutions, the so-called “breathers"
(Birnir et al., 1994). Namely, the breathers are the solutions localised in space.
Instead of this, we consider the stability of solutions in the form of the waves
with finite amplitudes which provide the interaction of nonlinear resonances. We
demonstrate that in spite of the quasiclassical region of the chosen parameters the
quantum effects can play a significant role in the dynamics of the system.

Hence, the study of the dynamics of four wave decay processes for system
(1.2) in the quantum case seems to be well motivated. This paper is organised as
follows. In Sections 2, 3 and 4 we have compiled some basic facts on the dynamics
of four wave decay processes in a classical chain. The equations describing the
dynamics of quantum decay processes are presented in Section 5. Sections 6, 7
and 8 contain a detailed study of the quantum decay system. The local solution
of the system guaranteed by the Cauchy–Kovalevskaya Theorem is proved to
analytically extend to all time, space and parameter values. It is proved that in
the quasiclassical limit, and under the condition of classical instability, a quantum
solution converges to a classical one on the time scale

T ∼ 1

6X
log

X

ε
,

where X is a dimensional action of the classical system, and ε is a quantum
dimensionless parameter, ε ∼ h, which is assumed to be small in the quasiclassical
region, ε � 1. We also demonstrate how to build an explicit quantum solution in
the frames of the asymptotic expansions by using a small parameter, ε.

Note that the logarithmically small time-scale of applicability of a classical
consideration is not related to the used mathematical approach, but is due to a
physical nature of differences between classical unstable and the corresponding
quantum dynamics for observables. Further analysis of this problem in relation
to the experimentally realisable situations, such as Bose–Einstein condensates,
quantum optical systems, nano-mechanical cantilevers and others, is of significant
interest.

2. NARROW PACKET APPROXIMATION

Before discussing the decay instability in the quantum case we look more
closely at some peculiarities of the dynamics of four wave decay processes in a
classical chain. To this end, we pass in (1.2) to the canonical variables ak and a∗

k

by

ak = 1√
2mhωk

(Pk − ıωkU
∗
k ), (2.1)
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where

Pk = 1√
N

N∑

n=1

pn e−2π k
N

nı,

Uk = 1√
N

N∑

n=1

un e2π k
N

nı,

ωk = 2

√
ε

m
sin π

k

N
.

In the classical case, the commutator [aj , a
†
k ] = 0 vanishes for all j, k =

1, . . . , N and Ik = h |ak|2 is a classical action of the phonon with momentum
k. The Planck constant, h, appears in the classical limit for convenience of the
comparison with the quantum solution.

Suppose that the initial data of system (1.2) satisfy the condition of the
“narrow packet” approximation

δk/k0 � 1, (2.2)

where δk = |k − k0| is the characteristic size in k of a packet of initiated modes,
and k0 is the characteristic wave number of the center of the packet (k0 ∼ N/2).
In the variables ak , a∗

k the Hamiltonian (1.2) takes the form

H = h

N∑

k=1

ωka
∗
k ak + 1

2
h2

∑

k1,k2,k3,k4

Vk1k2k3k4 a∗
k1

a∗
k2

ak3ak4 δk1+k2−k3−k4,0 + R, (2.3)

where

Vk1k2k3k4 = 3ν

εmN

(
sin π

k1

N
sin π

k2

N
sin π

k3

N
sin π

k4

N

)1/2

.

In (2.3) the terms a∗
k1

a∗
k2

ak3ak4 represent the resonance four wave interaction pro-
cesses of waves, which are decisive under the condition (2.2). By R we denote
the non-resonant terms like ak1ak2ak3ak4 , a∗

k1
ak2ak3ak4 , etc., which can be neglected

under the approximation in question, at least at the initial stage.
Conditions at which the non-resonant terms can be neglected are well under-

stood for different nonlinear systems (see for details Zakharov, 1996; Bogoliubov
and Mitropolskii, 1958). In particular, in Zakharov (1996) a similar approxima-
tion was considered and explained for a classical dynamics of four wave decays
in plasma. In our case, these conditions can be presented as V0I/ωk0 � 1, where
I is the classical action (see below for notation). The latter condition is satisfied
if the nonlinear part in the initial FPU Hamiltonian (1.2) is smaller than the linear
one, which is assumed in our consideration.
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Under the condition (2.2) one can set

ωk ≈ ωk0 + c(k − k0) − �(k − k0)2,

Vk1k2k3k4 ≈ V0,
(2.4)

where

c = 2

√
ε

m

π

N
cos π

k0

N
, � =

√
ε

m

(
π

N

)2

sin π
k0

N
, V0 = 3ν

εmN

(
sin π

k0

N

)2

.

Substituting (2.3) and (2.4) into the equations of motion

ıȧk = ∂H

∂a∗
k

we get

ıȦj = −j 2�Aj + hV0

∑

j2,j3,j4

A∗
j2
Aj3Aj4 δj+j2−j3−j4,0, (2.5)

where

Aj = exp((ωk0 + cj )t ı)aj+k0 .

3. RELATION TO THE GROSS–PITAEVSKII EQUATION

Introduce an envelope

A(t, θ ) =
∑

j

Aj (t)eıjθ

= A(t, θ + 2π ).

It follows from (2.5) that the function A satisfies the Gross–Pitaevskii (GP) equa-
tion (which in this case coincides with nonlinear Schrödinger equation)

ı
∂A

∂t
= �

∂2A

∂θ2
+ hV0 |A|2A,

with periodic boundary conditions. This establishes a relation between the FPU
system and the BEC system with attractive interactions (see also Berman et al.,
2002). One can easily see that the next order corrections in the FPU resonant
Hamiltonian (2.3) lead to the modified equation for 
 (see also Berman and
Izrailev, 2005)

ı
∂A

∂t
= �

∂2A

∂θ2
+ ıκ

∂3A

∂θ3
+ hV0 |A|2A + 4ıhV0 |A|2 ∂A

∂θ
,

where κ = (1/6)(∂3ωk/∂k3) |k=k0 . This equation can be useful for understanding
the peculiarities of the dynamics of the FPU system (1.2) in the narrow packet
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approximation, which goes beyond the integrable nonlinear Schrödinger equation.
In particular, the properties of integrability of this equation and its relation to
the stochastic instability in the FPU system (1.2) can be a subject of further
investigations.

4. CLASSICAL PARAMETRIC INSTABILITY

The equations (2.5) describe the dynamics of four wave interactions in chain
(1.2). As is shown in Berman and Kolovskii (1984), if ν � 2π2k0/3NEk0 ∼ 1/E,
E being the energy of the system, then the “narrow packet” approximation survives
for sufficiently large times. In what follows we think of equations (2.5) as the input
ones.

As was already mentioned, the equations (2.5) are equivalent to a nonlinear
Schrödinger equation with periodic boundary conditions, which is known to be a
completely integrable system both in the classical and quantum cases, cf. Isergin
and Korepin (1982). In spite of the integrability, the equations (2.5) describe the
parametric instability, or the processes of four wave interactions (or decays).

We next present a condition for appearance of the decays. It is easy to verify
that the equations (2.5) have an explicit partial solution in the form of a finite
amplitude wave

Ak(t) = exp((�k − hV0|Ak|2)t ı) Ak,

Aj (t) = 0, if j �= k,
(4.1)

where �k = k2�. Let us examine the stability of solution (4.1) with respect to
the decay of the mode k in neighbouring modes 2k 	→ (k − l) + (k + l). Suppose
that the modes with j �= k are slightly perturbed at the initial instant, so that
|Aj | � |Ak|. By linearising equations (2.5) in Aj one easily arrives at the system

ıȦk = −�kAk + hV0|Ak|2Ak,

ıȦk−l = −�k−lAk−l + 2hV0|Ak|2Ak−l + hV0A
2
kA

∗
k+l ,

ıȦk+l = −�k+lAk+l + 2hV0|Ak|2Ak+l + hV0A
2
kA

∗
k−l .

(4.2)

These equalities show that the dynamics of a “large” wave does not change at
first approximation of perturbation theory. The amplitudes of “small” waves grow
exponentially with the increment

λl =
√

V0I (
�) −
(
�

2

)2
= l�

√
2V0I

�
− l2, (4.3)

where 
� = �k−l + �k+l − 2�k = 2l2� is a distance in frequency from the
resonance (1.1), and I = h |Ak|2 is the classical action of the large wave. From
(4.3) we get the desired condition for existence of decays, namely 2V0I/� > 1.
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In terms of original system (1.2) this condition reads

ν >
π2

3NEk0

∼ 1

NE
. (4.4)

5. QUANTUM EQUATIONS OF DECAY

We now pass to analysis of the quantum case where pn and un in (1.2) are
operators with commutativity relation [uj , pk] = ıhδjk . Changing the variables
by (2.1) and (2.4) as in the classical case (see Berman et al., 1986, for more
details), we get the following system of operator equations which describe the
four wave interactions in the quantum case

ıȦj = −j 2(1 + q)�Aj + hV0

∑

j2,j3,j4

A
†
j2
Aj3Aj4 δj+j2−j3−j4,0, (5.1)

where

[Aj,A
†
k] = δjk,

q = h

ν cot
π

2N

32N
√

mε3
,

� and V0 being defined in (2.4). The renormalisation of the frequency � is due to
the ordering of operators. It will cause no confusion if we use the same notation
�j to designate j 2(1 + q)�.

To treat the system (5.1) we use the techniques of projection onto the basis
of coherent states, cf. Berman et al. (1981) and Sinitsyn and Tsukernik (1982).
Assume that at the initial instant each mode of the bosonic field rests on a coherent
state described by a number αj . We denote

αj (t) = 〈�α| Aj (t) |�α〉
= αj (t, �α, �α∗),

where |�α〉 is the vector of coherent states of the phononic field at the initial instant.
The coherent states are chosen as initial wave functions for phonons because
these states provide the most close description of the quantum dynamics to the
classical one. Our consideration is based on deriving a closed system of equations
for quantum observables. To do this, we use a Heisenberg representation in which
the operators depend on time, and the wave function is time-independent and is
represented as a product of coherent states for individual phonons.

From (5.1) it follows that the operator Aj (t) satisfies the Heisenberg equation

ıhȦj = [Aj (t),Heff], (5.2)
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with the effective Hamiltonian

Heff = −h
∑

k

�kA
†
kAk + 1

2
h2V0

∑

k1,k2,k3,k4

A
†
k1

A
†
k2

Ak3Ak4 δk1+k2−k3−k4,0.

Averaging the equation (5.2) in the initial coherent state gives a closed partial
differential equation for quantum observable α(t, �α, �α∗)

ıα̇j (t) = T̂ αj (t),
αj (0) = αj ,

(5.3)

where

T̂ = −
∑

k

�k

(
αk

∂

∂αk

− c.c.

)

+hV0

∑

k1,k2,k3,k4

(
α∗

k1
αk2αk3

∂

∂αk4

− c.c.

)
δk1+k2−k3−k4,0

+1

2
hV0

∑

k1,k2,k3,k4

(
αk1αk2

∂

∂αk3

∂

∂αk4

− c.c.

)
δk1+k2−k3−k4,0,

the c.c. meaning complex conjugate terms (cf. Berman et al., 1986, for more
details).

The Equation (5.3) is easily checked to possess a solution of the form of finite
amplitude periodic wave

αk(t) = exp(�ktı − (1 − exp(−hV0t ı))|αk|2) αk,

αj (t) = 0, if j �= k.
(5.4)

Note that the solution (5.4) turns into the classical wave (4.1) when h → 0,
|αk| → ∞, and h|αk|2 → I . We now examine the stability of solution (5.4) relative
to the decay in neighbouring modes 2k 	→ (k − l) + (k + l). Assume that at the
initial instant the amplitudes of the modes j �= k are small, i.e., |αj | � |αk|. In
this case one can look for a solution αk+l of (5.4) in the form of expansion in αj ,

αk+l(t, �α, �α∗) = cl,0(t, αk, α
∗
k )

+
∑

j �=0

(
c

(1,0)
l,j (t, αk, α

∗
k )αk+j + c

(0,1)
l,j (t, αk, α

∗
k )α∗

k+j

)

+ . . . , (5.5)

the dots meaning the terms containing the products αk+j1αk+j2 , α∗
k+j1

αk+j2 ,
α∗

k+j1
α∗

k+j2
, etc. From the initial condition αk+l(0, �α, �α∗) = αk+l we readily deduce
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that

c0,0(0, αk, α
∗
k ) = αk, cl,0(0, αk, α

∗
k ) = 0;

c
(1,0)
l,j (0, αk, α

∗
k ) = δlj , c

(0,1)
l,j (0, αk, α

∗
k ) = 0

(5.6)

for l �= 0. In (5.5) αk+j and α∗
k+j are the initial amplitudes of “small” waves, and

αk is the initial amplitude of a “large” wave. The coefficients cl,0, c
(1,0)
l,j and c

(0,1)
l,j ,

etc. do not explicitly contain smallness related to the amplitudes αk+j with j �= 0.
Below, we will study the dynamics of functions cl,0, c

(1,0)
l,j and c

(0,1)
l,j , for they

determine the evolution of small perturbations with amplitudes αk+j . Substituting
(5.5) into (5.3) and gatherings the coefficients of the same powers of αk+j , we arrive
at a system of equations for the coefficients which is not closed in general, i.e., the
equations for cl,0, c

(1,0)
l,j and c

(0,1)
l,j also include higher order coefficients. However,

one can show that higher order coefficients describe the influence of small waves
on each other and on the large wave. Hence they do not essentially contribute to
the dynamics of the system at the initial stage. A quasiclassical asymptotics of the
contribution of higher order coefficients is discussed in Berman et al. (1986).

On account of the above remark, we cut off the expansion (5.5) upon the linear
terms. In this way we get the following closed system of differential equations

ı ċl,0 = M̂cl,0,

ı ċ
(1,0)
l,j = M̂c

(1,0)
l,j − (�k+j − 2hV0|αk|2)c(1,0)

l,j + 2hV0αk

∂

∂αk

c
(1,0)
l,j − hV0α

∗
k

2c
(0,1)
l,−j ,

ı ċ
(0,1)
l,−j = M̂c

(0,1)
l,−j − (�k−j − 2hV0|αk|2)c(0,1)

l,−j − 2hV0αk

∂

∂αk

c
(0,1)
l,−j + hV0α

2
kc

(1,0)
l,j ,

(5.7)
cf. Berman et al. (1986), where

M̂ = −(�k − hV0|αk|2) αk

∂

∂αk

+ 1

2
hV0 α2

k

∂2

∂α2
k

− c.c.,

the c.c. stand for complex conjugate terms.
The solution of the first Equation (5.7) has the form (5.4) and describes the

dynamics of a “large” wave at first approximation. The remaining system of two
equations can be further simplified. For this purpose we conclude from (5.6) and
the linearity of (5.7) that only two relevant summands in (5.5) are different from
zero, namely c

(1,0)
l,l and c

(0,1)
l,−l . Let us now substitute the unknown functions by

c
(1,0)
l,l = exp(−(�k−l − 2�k)t ı)f,

c
(0,1)
l,−l = αk

α∗
k

exp(−(�k−l − 2�k)t ı)g.
(5.8)
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Under this notation the average of the operator Ak+l(t) is

αk+l(t) = 〈�α| Ak+l(t) |�α〉
= exp(−(�k−l − 2�k)t ı)(αk+lf (t) + αk

α∗
k

α∗
k−lg(t)).

Substituting (5.8) into (5.7) we deduce that both f and g depend only on |αk|2
and satisfy the system of equations

ı ḟ = (2V0I − (�k−l + �k+l − 2�k))f + 2hV0 I
∂f

∂I
− V0Ig,

ı ġ = V0I f + hV0 g
(5.9)

with initial data

f (0) = 1,

g(0) = 0,
(5.10)

where I = h|αk|2 stands, as before, for the classical action of the kth mode.
Equation (5.9) describes the decay instability in the quantum case. From

now on they will be referred to as equations of quantum decay. In the classical
case h = 0 they can be solved explicitly, which shows once again the exponential
growth of “small” waves with the increment λl (4.3) provided that 2V0I > �, cf.
Section 2.

6. ANALYSIS OF QUANTUM EQUATIONS

Before we pass to the analysis of Equations (5.9) we make necessary simpli-
fications. We reset

f 	→ exp(−hV0t ı)f,

g 	→ exp(−hV0t ı)g

and assume, for simplicity, 2(1 + q)� − hV0 ≈ 2�. We also introduce a dimen-
sionless time �t 	→ t and a dimensionless variable x = V0I/� instead of action,
I . For simplicity we restrict our attention to the case l = 1. Then (5.9) takes the
form

ı ḟ = 2(x − 1)f + 2εx
∂f

∂x
− xg,

ı ġ = xf,
(6.1)

where

ε = h
V0

�

is a dimensionless quantum parameter.
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The system (6.1) is of mixed type with hyperbolic degeneracy on the line
x = 0. The general theory yields merely that (6.1) has a real analytic solution in
(t, x, ε) in some neighborhood of the plane t = 0. We prove in Section 7. that
this solution actually extends analytically in (t, x, ε) to all of R

3, the extension
satisfying

√
|f |2 + |g|2 ≤

√
5

2
exp

(
5

2
xt

)
(6.2)

for all t , x and ε.
The last inequality shows that decays in the quantum case run not faster

than exp(γ t), where γ does not depend on t . This enable us to apply the Laplace
transform in the analysis of system (6.1).

Since the solution of (6.1) for ε = 0 has an explicit analytic form, it is
interesting to develop a quasiclassical approach for describing the dynamics of
decays. Denote by fcl, gcl the solution of (6.1) for ε = 0. We prove in Section 8.
that

f (t, x, ε) =
∞∑

k=0

�kfcl(t, x) εk, (6.3)

� being the integro-differential operator

�u (t, x) = −2ıx

∫ t

0
fcl(t − s, x)

∂u

∂x
(s, x) ds.

The series (6.3) converges uniformly on all subsets of R+ × R+ × R+ of the
form

{t ≤ T } × {x ≤ X} × {ε ≤ (2T e3XT )−1}.
Hence it follows that

T ∼ 1

6X
log

X

ε

in the domain of quasiclassical approach x/ε = I/h � 1. The time of applicability
of the quasiclassical approach is therefore logarithmically small, i.e., T ∼ log 1/h

in contrast to T ∼ 1/hγ for classically stable dynamics. This is a consequence of
instability of the dynamics of the classical system.

A similar result was earlier obtained in Berman and Zaslavskiis (1982) when
studying conditions of applicability of quasiclassical approximations for describ-
ing dynamics of nonlinear quantum system whose classical limit has the property
of stochastic instability.
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7. EXISTENCE OF SOLUTIONS

Let us formulate the problem more precisely. By (6.1), we have the following
system for approximate description of the dynamics of quantum decays

ḟ = −2ı(x − 1)f − 2ıεx
∂f

∂x
+ ıxg,

ġ = −ıxf
(7.1)

in the half-plane (t, x) ∈ R+ × R under the initial conditions

f (0, x) = 1,

g(0, x) = 0.
(7.2)

In fact, the domain of x = V0I/� is x > 1/2, the last condition guarantying
the existence of decays by (4.4).

The principal symbol of (7.1) is given by the matrix
(

ıτ −2εxξ 0

0 ıτ

)

with the determinant −τ (τ + 2ı εxξ ). It follows that (7.1) is a mixed type system
with hyperbolic degeneracy on the line x = 0. The real characteristics of this
system are lines x = const, hence the Cauchy problem (7.1), (7.2) is noncharac-
teristic.

The system (7.1) has normal form with respect to the time variable t , and the
coefficients of the system and the Cauchy data (7.2) are entire functions of t , x

and ε. Therefore, it fulfills the conditions of the Cauchy–Kovalevskaya Theorem,
which implies that the problem (7.1), (7.2) has a real analytic solution

F (t, x, ε) =
(

f (t, x, ε)
g(t, x, ε)

)

in some neighbourhood U of the hyperplane {t = 0} in R
3. The solution is unique

in the class of real analytic functions. Moreover, the solution is unique in the class
of continuously differentiable functions, which is due to Holmgren’s uniqueness
theorem.

The question arises whether the solution actually extends analytically to all
of the half-space {t > 0}. To treat the problem we eliminate one unknown function
of the system.

Lemma 7.1. Given any entire function 
0(x), the Cauchy problem for the trun-
cated equation

{

̇ = −2ı(x − 1)
 − 2ıεx

∂


∂x
for t > 0,


(0) = 
0(x)
(7.3)
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has a unique solution which is an entire function of (t, x, ε).

Proof. Since the functions we work with are entire we can change the variables
by

t = ız,

log x = −2ε z + w,

with z,w ∈ R. For the function u(z,w) := 
(ız, exp(−2ε z + w)) the Cauchy
problem (7.3) becomes

⎧
⎨

⎩

∂u

∂z
= 2(e−2εz+w − 1)u for z ∈ R,

u(0, w) = 
0(ew).

This latter problem has a unique entire solution which can be moreover explicitly
written,

u(z,w) = 
0(ew) exp

(
1

ε
ew(1 − e−2εz) − 2z

)
.

Returning to the variables t and x yields


(t, x, ε) = 
0(x) exp
(x

ε
(e−2ı εt − 1) + 2ı t

)
, (7.4)

as desired.
�

Note that 
(t, x, ε) converges to 
0(x) exp(−2ı t(x − 1)) for ε → 0, as is
easy to see.

From now on we tacitly assume that 
0 = 1. By abuse of notation, we use
the same letter 
 to designate the solution of (7.3) with 
0 = 1. Set

�(t, x, ε) = −ıx

∫ t

0

(s, x, ε) ds. (7.5)

Lemma 7.2. Suppose P is a continuous function of (t, x, ε) in the half-space
R+ × R × R. Then the solution of the Cauchy problem for the system

ḟ = −2ı(x − 1)f − 2ıεx
∂f

∂x
+ P,

ġ = −ıxf
(7.6)

under initial conditions (7.2) is given by the formula

f (t, x, ε) = 
(t, x, ε) +
∫ t

0

(t − s, x, ε)P (s, x, ε) ds,

g(t, x, ε) = �(t, x, ε) +
∫ t

0
�(t − s, x, ε)P (s, x, ε) ds.
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Proof. To simplify notation, we will not indicate the dependence of f , g, etc. on
x and ε.

Since 
(0) = 1 and �(0) = 0 both f and g satisfy (7.2). Furthermore, an
easy calculation shows that

ḟ (t) = 
̇(t) + 
(0)P (t) +
∫ t

0

̇(t − s)P (s) ds

= 
̇(t) + 
(0)P (t) −
∫ t

0

(
2ı(x − 1)
(t − s) + 2ıεx

∂

∂x

(t − s)

)
P (s) ds

= 
̇(t) + 
(0)P (t) − 2ı(x − 1)(f (t) − 
(t)) − 2ıεx
∂

∂x
(f (t) − 
(t))

= −2ı(x − 1)f (t) − 2ıεx
∂

∂x
f (t) + P (t),

the last equality being a consequence of (7.3), and similarly

ġ(t) = �̇(t) + �(0)P (t) +
∫ t

0
�̇(t − s)P (s) ds

= �̇(t) + �(0)P (t) − ıx

∫ t

0

(t − s)P (s) ds

= �̇(t) + �(0)P (t) − ıx (f (t) − 
(t)),

showing the lemma.
�

Lemma 7.2 allows one to reduce the Cauchy problem (7.1), (7.2) to an integral
equation of Volterra type, namely

f (t) = 
(t) + ıx

∫ t

0

(t − s)g(s) ds,

g(t) = �(t) + ıx

∫ t

0
�(t − s)g(s) ds.

(7.7)

Theorem 7.3. The problem (7.1), (7.2) has a unique solution {f, g} which is a
real analytic function of (t, x, ε) on all of R × R × R, satisfying (6.2).

Proof. Since both 
 and � are entire functions of (t, x, ε), the existence and
uniqueness of a solution follow from the classical Volterra theory. This solution
can be actually obtained by successive approximations. It remains to establish
(6.2).

To this end, we apply the successive approximation method to solve the
second equation of (7.7), and then we substitute g to the first equation, thus
obtaining f . For simplicity, we restrict our discussion to the case of nonnegative t ,
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x and ε, which involves no loss of generality. Setting g0 = �, we define iterations

gk(t) = �(t) + ıx

∫ t

0
�(t − s)gk−1(s) ds

for k = 1, 2, . . ..
Since

|g0(t)| ≤ x

∫ t

0
exp

(x

ε
(cos 2εs − 1)

)
ds

≤ x

∫ t

0
exp

(x

ε
2εs

)
ds

≤ 1

2
(e2tx − 1),

one easily obtains by induction

|g1(t)| ≤
(

1

2
− 1

4

)
ϕ + 1

4
tx ψ,

|g2(t)| ≤
(

1

2
− 1

16
+ 1

16
(tx)2

)
ϕ + 1

16
tx ψ,

|g3(t)| ≤
(

1

2
− 21

96

)
ϕ +

(21

96
tx + 1

96
(tx)3

)
ψ,

|g4(t)| ≤
(

1

2
− 63

768
+ 45

768
(tx)2 + 1

768
(tx)4

)
ϕ +

(
63

768
tx − 2

768
(tx)3

)
ψ,

where

ϕ = e2tx − 1,

ψ = e2tx + 1.

Given any k = 1, 2, . . ., we get

|gk(t)| ≤ (ck,0 + ck,2(tx)2 + . . .)ϕ + (ck,1tx + ck,3(tx)3 + . . .)ψ,

where ck,n = 0 for n > k. The coefficients ck,n can actually be estimated uniformly
in k by

|ck,n| ≤ 1

2

1

2n

1

n!
(7.8)

for all n.
Letting k → ∞ we deduce that the limiting function g(t) fulfills the estimate

|g(t)| ≤ 1

2

∞∑

n=0

1

(2n)!

(
tx

2

)2n

ϕ + 1

2

∞∑

n=0

1

(2n + 1)!

(
tx

2

)2n+1

ψ

≤ 1

2
cosh

tx

2
(e2tx − 1) + 1

2
sinh

tx

2
(e2tx + 1)
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for all t ≥ 0. Using the definitions of functions cosh x and sinh x we readily obtain

|g(t)| ≤ 1

2

(
e(5/2) tx − e−(1/2) tx

)

≤ 1

2
e(5/2) tx

and

|f (t)| ≤ e2tx + x

∫ t

0
e2x(t−s) 1

2
e(5/2) sx ds

≤ e(5/2) tx , (7.9)

which implies (6.2).
�

As already mentioned, the solution {f, g} of (7.1), (7.2) is also unique in the
space of continuously differentiable functions.

8. SUCCESSIVE APPROXIMATIONS

Set

A =
(−2ı (x − 1) ıx

−ıx 0

)
,

and let

λ+ = ı(1 − x) + √
2x − 1,

λ− = ı(1 − x) − √
2x − 1

stand for the eigenvalues of the matrix A. The system (7.1) for ε = 0 takes the
form

Ḟcl = AFcl

with

Fcl(t, x) =
(

fcl(t, x)
gcl(t, x)

)
,

hence the solution of the Cauchy problem (7.1), (7.2) corresponding to ε = 0 can
be written in the form

Fcl =
∞∑

k=0

AkF0 (x)
t k

k!
,

=

⎛

⎜⎜⎝
eλ−t + λ+

eλ+t − eλ−t

λ+ − λ−

−ı
eλ+t − eλ−t

λ+ − λ−

⎞

⎟⎟⎠ (8.1)
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where

F0 =
(

1
0

)
.

The inequality (7.9) certainly applies to fcl, thus giving an estimate for all
real t and x. In order to derive an estimate of Fcl on all of C × C we need the
following lemma.

Lemma 8.1. As defined above, Fcl is an entire function of t and x, satisfying

|Fcl(t, x)| ≤ exp ((2|1 − x| + |x|)|t |)
for all (t, x) ∈ C × C.

Proof. To shorten notation, set z = 2ı (1 − x) and w = ıx. An easy calculation
shows that

AkF0 (x) =
(

ckz
k − ck−2z

k−2w2 + ck−4z
k−4w4 − . . .

−ck−1z
k−1w + ck−3z

k−3w3 + ck−5z
k−5w5 + . . .

)
,

where the coefficients ck, ck−1, . . . , c0 are natural numbers determined by the table

1
1 1

1 1 1
1 1 2 1

1 1 3 2 1
1 1 4 3 3 1

1 1 5 4 6 3 1
1 1 6 5 10 6 4 1

1 1 7 6 15 10 10 4 1
1 1 8 7 21 15 20 10 5 1

1 1 9 8 28 21 35 20 15 5 1
ck ck−1 . . . c1 c0.

(8.2)

Using the inequality
√

|a|2 + |b|2 ≤ |a| + |b| and comparing (8.2) with the Pascal
triangle we get

|AkF0 (x)| ≤ |z|k + (|z| + |w|)k−1|w|
≤ (|z| + |w|)k.

Substituting this estimate into (8.1) yields

|Fcl(t, x)| ≤
∞∑

k=0

|AkF0 (x)| |t |k
k!

,

≤ exp ((|z| + |w|)|t |)
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for all (t, x) ∈ C × C, as desired.
�

The proof can be summarised by saying that the matrix A has an operator
bound less that the Holmgren norm 2|1 − x| + |x| from which the estimate is
immediate.

Theorem 7.3 shows immediately that F (t, x, 0) = Fcl(t, x) for all t and x,
i.e., the classical solution is the pointwise limit of the quantum solution if ε → 0.
Given any small ε > 0, the question arises of the range of times t for which the
classical limit still satisfactory describes the dynamics of quantum decays.

To study the problem we make use of the geometric series to get an asymptotic
expansion of F (t, x, ε) in powers of ε.

Lemma 8.2. Let P be a continuous function of (t, x) in the quarter-plane R+ ×
R+. Then the solution of the Cauchy problem for the system

ḟ = −2ı(x − 1)f + ıxg + P,

ġ = −ıxf
(8.3)

under initial conditions (7.2) is given by the formula

f (t, x) = fcl(t, x) +
∫ t

0
fcl(t − s, x)P (s, x) ds,

g(t, x) = gcl(t, x) +
∫ t

0
gcl(t − s, x)P (s, x) ds.

These formulas are just the well-known Duhamel formulas for an inhomo-
geneous linear evolution system.

Proof. To shorten notation, we write f (t) and g(t) instead of f (t, x), g(t, x), etc.
Since fcl(0) = 1 and gcl(0) = 0 both f and g satisfy (7.2). Furthermore, an

easy calculation shows that

ḟ (t) = ḟcl(t) + fcl(0)P (t) +
∫ t

0
ḟcl(t − s)P (s) ds

= ḟcl(t) + fcl(0)P (t) +
∫ t

0
(−2ı(x − 1)fcl(t − s) + ıxgcl(t − s)) P (s) ds

= ḟcl(t) + fcl(0)P (t) − 2ı(x − 1)(f (t) − fcl(t)) + ıx(g(t) − gcl(t))

= −2ı(x − 1)f (t) + ıxg(t) + P (t),
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and similarly

ġ(t) = ġcl(t) + gcl(0)P (t) +
∫ t

0
ġcl(t − s)P (s) ds

= ġcl(t) + gcl(0)P (t) − ıx

∫ t

0
fcl(t − s)P (s) ds

= ġcl(t) + gcl(0)P (t) − ıx (f (t) − fcl(t)),

which completes the proof.
�

Using Lemma 7.2 reduces the Cauchy problem (7.1), (7.2) to an integral
equation of Volterra type, namely

f (t, x, ε) = fcl(t, x) − 2ıεx

∫ t

0
fcl(t − s, x)

∂f

∂x
(s, x, ε) ds. (8.4)

Equation (8.4) is an in general difficult integral equation to analyse, not
lending itself to for example analysis in a Sobolev space, for the operator does
not contract. Usually these linear equations are analysed including the x∂x as part
of the unperturbed operator (via characteristics). It is important to note that the
characteristics go to infinity in an infinite time, from which the global existence
follows.

As in Section 6, we denote by � the integro-differential operator

�u (t, x) = −2ıx

∫ t

0
fcl(t − s, x)

∂u

∂x
(s, x) ds,

then the equation (8.4) can be written in the form

(I − ε�)f = fcl

whence

f (t, x, ε) = (I − ε�)−1fcl (t, x)

=
∞∑

k=0

�kfcl (t, x) εk. (8.5)

One verifies by induction that

�kfcl (t, x) = x

⎛

⎝

⎛

⎝
k∑

j=0

c−,k,j (x)t j

⎞

⎠ eλ−t +
⎛

⎝
k∑

j=0

c+,k,j (x)t j

⎞

⎠ eλ+t

⎞

⎠

for k = 1, 2, . . ., where c±,k,j (x) are irrational functions having the only singular-
ity at the point x = 1/2. Since fcl is an entire function, the iterations �kfcl are
entire functions of t and x, too.
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Note that (8.5) is a regular asymptotic series in powers of the small parameter.
No boundary layer is required, for the degeneracy at ε = 0 does not affect the
nature of the Cauchy problem.

Theorem 8.3. The series (8.5) converges uniformly in t , x and ε on compact
subsets of R × R × R of the form

{|t | ≤ T } × {|x| ≤ X} × {|ε| ≤ (2T e3XT )−1}.

Proof. From the Cauchy formula it follows that if ϕ(x) is an entire function of
x ∈ R then

sup
|z|≤r ′X

∣∣∣
∂ϕ

∂z

∣∣∣ ≤ 1

(r − r ′)X
sup

|z|≤rX

|ϕ(z)| (8.6)

for all X > 0 and 0 < r ′ < r .
By Lemma 8.1 we conclude that

sup
|z|≤rX

|fcl(t, z)| ≤ e(3rX+2)|t |

for any r > 0. We next show by induction that for all k = 1, 2, . . . the estimate
holds

sup
|z|≤X/k+1

|�kfcl (t, z)| ≤ (2|t |)k e(3X+2)|t |. (8.7)

For k = 1 we get, by (8.6),

sup
|z|≤X/2

|�fcl (t, z)| ≤ sup
|z|≤X/2

| − 2ız|
∫ t

0
|fcl(t−s, z)| |(∂/∂z)fcl(s, z)| ds

≤ X

∫ t

0
exp

((
3
X

2
+ 2

)
(t−s)

)
2

X
exp ((3X + 2)s) ds

= 2 exp

((
3
X

2
+ 2

)
t

)∫ t

0
exp

(
3
X

2
s

)
ds

≤ 2|t | exp ((3X + 2)|t |) ,

as desired. Having granted the inequalities (8.7) up to the number k, we derive, by
(8.6),

sup
|z|≤X/k+2

|�k+1fcl (t, z)|

≤ 2X

k+2

∫ t

0
exp

((
3

X

k + 2
+ 2

)
(t−s)

)
(k+1)(k+2)

X
sup

|z|≤X/k+1
|�kfcl (s, z)|ds
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≤ 2(k + 1) exp

((
3

X

k + 2
+ 2

)
t

)∫ t

0
(2s)k exp

(
3

k + 1

k + 2
Xs

)
ds

≤ 2(k + 1) exp ((3X + 2)|t |)
∫ t

0
(2s)k ds

≤ (2|t |)k+1 exp ((3X + 2)|t |) ,

thus completing the induction step.
Since X is actually arbitrary in (8.7) we easily deduce from this inequality

that

sup
|z|≤X

|�kfcl (t, z)| ≤ e(3X+2)|t | (2|t |e3X|t |)k

for all t ∈ R. Hence it follows that the series (8.5) converges uniformly in t , x and
ε on each compact set

{|t | ≤ T } × {|x| ≤ X} × {|ε| ≤ (2T e3XT )−1},
for

|f (t, x, ε)| ≤ exp ((3X + 2)|t |)
∞∑

k=0

(2|ε||t | exp(3X|t |))k

≤ e(3X+2)|t |

1 − 2|ε||t | e3X|t | ,

showing the theorem.
�

Theorem 8.3 implies that (8.1) is an asymptotic series in the powers of ε

for the solution of (7.1), (7.2) on bounded subsets of Rt × Rx , provided that ε

is small enough. Let us express T as function of ε and x from the inequality
ε ≤ (2T e3XT )−1 entering into the theorem. This will enable us to evaluate the
characteristic times of applicability of the classical approximation corresponding
to ε = 0.

Corollary 8.4. Let X/ε � 1. Then Fcl approximates F (t, x, ε) for small ε if
t ≤ T with

T ∼ 1

6X
log

X

ε
.

Proof. Rewrite the inequality ε ≤ (2T e3XT )−1 in the form

2εT e3XT ≤ 1. (8.8)
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Since the left-hand side is an increasing function of T ≥ 0, the set of all T

satisfying (8.8) is an interval [0, T0], where T0 = T0(X, ε) is the root of the equation
2εT e3XT = 1.

Let us evaluate T0. From e3XT > 1 + 3XT it follows that T < (e3XT −
1)/3X for all T ≥ 0. Hence T1 < T0 < T2 where T1 and T2 are the unique positive
solutions of the equations

2ε
e3XT1 − 1

3X
e3XT1 = 1,

2ε T2 (1 + 3XT2) = 1,

respectively. The solutions of these equations can be explicitly found, more pre-
cisely,

T1 = 1

3X
log

1

2

(
1 +

√
1 + 6

X

ε

)
,

T2 = 1

6X

(
−1 +

√
1 + 6

X

ε

)
.

The asymptotic of T1 in the domain of quasiclassical approach x/ε � 1 is
actually

T1 ∼ 1

6X
log

X

ε
,

as is easy to check.
�
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